Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(12): 9345-9357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36383335

RESUMO

In the current study, two plants, viz., Pisum sativum L. and Hordeum vulgare L., were exposed to nano- and macro-dispersed ZnO at 1, 10, and 30 times of maximal permissible concentration (MPC). The main objective of the study is to depict and compare the genotoxicity in terms of chromosomal anomalies, cytotoxicity (i.e., mitotic index), and phytotoxicity (viz., germination, morphometry, maximal quantum yield, and chlorophyll fluorescence imaging) of macro- and nano-forms of ZnO along with their accumulation and translocation. In the case of genotoxic and cytotoxic responses, the maximal effect was observed at 30 MPC, regardless of the macro- or nano-forms of ZnO. The phytotoxic observations revealed that the treatment with macro- and nano-forms of ZnO significantly affected the germination rate, germination energy, and length of roots and shoots of H. vulgare in a dose-dependent manner. The factor toxicity index of treated soil demonstrated that toxicity soared as concentrations increased and that at 30 MPC, toxicity was average and high in macro- and nano-dispersed ZnO, respectively. Furthermore, the photosynthetic parameters were observed to be negatively affected in both treatments, but the maximal effect was observed in the case of nano-dispersed form. It was noted that the mobility of nano-dispersed ZnO in the soil was higher than macro-dispersed. The increased mobility of nano-dispersed ZnO might have boosted their accumulation and translocation that subsequently led to the oxidative stress due to the accelerated production of reactive oxygen species, thus strengthen toxicity implications in plants.


Assuntos
Óxido de Zinco , Óxido de Zinco/toxicidade , Raízes de Plantas , Fotossíntese , Solo , Dano ao DNA
2.
Environ Geochem Health ; 45(12): 9435-9449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36070110

RESUMO

Soil decontamination and restoration continue to be a key environmental concern around the globe. The degradation of soil resources due to the presence of potentially toxic elements (PTEs) has a substantial influence on agricultural production, food security, and human well-being, and as a result, urgent action is required. PTEs pollution is not a threat to the agroecosystems but also a serious concern to human health; thereby, it needs to be addressed timely and effectively. Hence, the development of improved and cost-effective procedures to remove PTEs from polluted soils is imperative. With this context in mind, current review is designed to distinctly envisage the PTEs removal potential by the single and binary applications of biochar (BC) and nanomaterials (NMs).2 Recently, BC, a product of high-temperature biomass pyrolysis with high specific surface area, porosity, and distinctive physical and chemical properties has become one of the most used and economic adsorbent materials. Also, biochar's application has generated interest in a variety of fields and environments as a modern approach against the era of urbanization, industrialization, and climate change. Likewise, several NMs including metals and their oxides, carbon materials, zeolites, and bimetallic-based NMs have been documented as having the potential to remediate PTEs-polluted environments. However, both techniques have their own set of advantages and disadvantages, therefore combining them can be a more effective strategy to address the growing concern over the rapid accumulation and release of PTEs into the environment.


Assuntos
Nanoestruturas , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química
3.
Environ Pollut ; 303: 119096, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35248616

RESUMO

The objective of this study was to demonstrate the feasibility and the relevance of combining biochar with the Fenton process for the simultaneous improvement of polycyclic aromatic hydrocarbons (PAHs) degradation and immobilization of heavy metals (HMs) in real soil remediation processes at circumneutral pH. The evaluation of PAHs degradation results was performed through multivariate statistical tools, including principal component analysis (PCA) and partial least squares (PLS). PCA showed that the level of biochar amendment decisively affected the degree of degradation of total PAHs, highlighting the role of biochar in catalyzing the Fenton reaction. Moreover, the PLS model was used to interpret the important features of each PAH's physico-chemical properties and its correlation to degradation efficiency. The electron affinity of PAHs correlated positively with the degradation efficiency only if the level of biochar amendment sat at 5%, explained by the ability of biochar to transfer the electrons to PAHs, improving the Fenton-like degradation. Moreover, the addition of biochar reduced the mobilization of HMs by their fixation on their surface, reducing the Fenton-induced metal leaching from the destruction of metal-organic complexes. In overall, these results on the high immobilization rate of HMs accompanied with additional moderate PAHs degradation highlighted the advantages of using a biochar-assisted Fenton-like reaction for sustainable remediation of technogenic soil.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Carvão Vegetal/química , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Poluentes do Solo/análise
4.
Environ Geochem Health ; 44(1): 195-206, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33411119

RESUMO

In the present study, the biochar derived from sunflower husks was used as a mediator in the heterogeneous Fenton process. The physical and chemical characteristics were studied in terms of specific surface area, elemental contents, surface morphology, surface functional groups, thermal stability, and X-ray crystallography. The main aim was to evaluate the effectiveness of biochar in a heterogeneous Fenton process catalyzed by hematite toward the degradation of benzo[a]pyrene (BaP) in Haplic Chernozem. The Fenton-like reaction was performed at a pH of 7.8 without pH adjustment in chernozem soil. The effects of operating parameters, such as hematite dosage and H2O2 concentrations, were investigated with respect to the removal efficiency of BaP. The overall degradation of 65% was observed at the optimized conditions where 2 mg g-1 hematite and 1.25 M H2O2 corresponded to the H2O2 to Fe ratio of 22:1. Moreover, the biochar amendment showed an increment in the removal efficiency and promotion in the growth of spring barley (Hordeum sativum distichum). The BaP removal was reached 75 and 95% after 2.5 and 5% w/w addition of biochar, respectively. The results suggested that the Fenton-like reaction's effectiveness would be greatly enhanced by the ability of biochar for activation of H2O2 and ejection of the electron to reduce Fe(III) to Fe(II). Finally, the presence of biochar could enhance the soil physicochemical properties, as evidenced by the better growth of Hordeum sativum distichum compared to the soil without biochar. These promising results open up new opportunities toward the application of a modified Fenton reaction with biochar for remediating BaP-polluted soils.


Assuntos
Benzo(a)pireno , Poluentes do Solo , Carvão Vegetal , Compostos Férricos , Peróxido de Hidrogênio , Solo
5.
J Environ Manage ; 284: 112023, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540196

RESUMO

The remediation of toxic polycyclic aromatic hydrocarbons (PAHs) in the soil is always an important topic since exposure to contaminated soil with carcinogenic, mutagenic, and teratogenic potential can result in serious health effects. With respect to the remediation of PAHs contaminated soil, nanomaterials (NMs) have recently received a great deal of attention due to the special characteristics arising from their nanoscale sizes. However, the usefulness and potency of these NMs depend on their adaption to specific site conditions and soil properties. Since there is no comprehensive review of the applications of NMs, it is of great importance to analyze, discuss, and interpret the latest progress in the application of NMs for the remediation of contaminated soils containing PAHs. This overview essentially captures the novel advances made in nano zero valent-iron (nZVI), metal oxides, carbon-based NMs, and polymer-based materials. Each characteristic of NMs that contributes to the enhancement of the process is highlighted. Moreover, operational conditions in which the best-obtained results are achieved qualitatively summarize. This review is also given special attention to the type of soil and pollutant, which are major influential factors to affect the performance of the process. Furthermore, the potential implication of NMs and PAHs on soil properties is reviewed in terms of the changes in migration behavior of pollutants, plant phytotoxicity, and soil microbial community composition. Discussion on future perspectives is presented on the use and prospects for the application of NMs in contaminated soils.


Assuntos
Recuperação e Remediação Ambiental , Nanoestruturas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Poluição Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
6.
Environ Geochem Health ; 43(6): 2443-2454, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32737635

RESUMO

The effects of bulk- and nano-CuO were monitored on barley (Hordeum sativum L.) in hydroponic conditions. The anatomical and cyto-/morphometric parameters of plants, exposed to both types of CuO in different doses (300 and 2000 mg/L) were recorded. The germination rate, root and shoot lengths decreased in a dose-dependent manner. Exposure to nano-CuO significantly increased Cu content in the H. sativum roots; however, the translocation rates of dissolved Cu were low and showed less accumulation in above-ground tissues. The differences between nano- and bulk-CuO treated plants were sufficiently evident, but at lower concentrations, these differences were non-significant. The relative seed germination inhibition was noted up to 11% and 22% under the high dose of bulk- and nano-CuO, respectively; however, at low dose, it was non-significant. The relative root length was reduced 3.6 fold by bulk- and 1.5 fold by nano-CuO, and shoot lengths decreased 1.6 fold by bulk- and 1.4 fold by nano-CuO under the high dose after growth of 30 days. It indicated more morphological effects on H. sativum caused by bulk- than the nano-CuO. The cytomorphometric analysis indicated the average cortex cell, total cortex, and total central cylinder areas of root cells and the average areas of chlorenchyma leaf cells were increased as compared to control in both bulk- and nano-CuO treated plants. It showed destructive effects of nano- and bulk-CuO on cellular organizations of H. sativum anatomy. Thus, at the low dose, the minimal effects of nano-CuO were observed than the bulk. Therefore, the finding could be interest for the safe application of nano-CuO.


Assuntos
Cobre/farmacocinética , Hordeum/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Cobre/toxicidade , Germinação/efeitos dos fármacos , Hordeum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Sementes/efeitos dos fármacos , Distribuição Tecidual
7.
ACS Omega ; 5(37): 24145-24153, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984737

RESUMO

Silicon (Si) plays an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticide use is a big challenge nowadays. The use of Si has been proven to be an environmentally sound way of enhancing crop productivity by facilitating plant growth and development through either a direct or indirect mechanism, especially in tropical and subtropical regions. In particular, it has been investigated for its role in water stress management. The aim of the current experiment was to examine the protective role of Si in the photosynthetic capacity of different leaf segments and the ultrastructure of sugarcane (Saccharum officinarm) plants under water stress. Sugarcane cv. GT 42 plants were supplied with 0, 100, 300, and 500 mg L-1 Si and exposed for 60 days under each stress condition such as 100-95, 55-50, and 35-30% of field capacity. For the photosynthetic responses, each leaf was observed and separated into three equal parts (base, middle, and tip). We used intact leaves and were able to assess leaf photosynthetic responses. Under moderate and severe stress conditions, applied Si increased the photosynthesis (base, ∼16-143%; middle, 20-66%; and tip leaf part, 41-71%), transpiration rate (base, 15-97%; middle, 26-68%; and tip leaf part, 6-61%), and stomatal conductance (base, 26-137%; middle, 12-70%; and tip leaf part, 7-75%) in sugarcane plants. Ultrastructural examination of sugarcane leaves using scanning electron microscopy showed the remarkable effects on stomata ultrastructure. Silicon increased plant growth development, photosynthetic efficiency, and biomass/yield, and promoted better adaptation of stomata to drought. This study suggests that the application of Si may be used to increase the stress tolerance of sugarcane plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...